Supplementary information

Supplementary Notes

Proteomics has many key advantages over genomics, especially in directly
determining protein expression. Most quantitative experiments utilize a special tagging
system, usually either chemically (ICAT, iTRAQ)' or biosynthetically (cells grown in
media with one or more stable isotopes)”. Differences in protein expression are quantified
by the relative intensity of conjoint spectra, each with a tag unit difference (for review’).
Currently, retrospective comparisons between multiple datasets or with historical data are
apparently impossible.

Label-free quantitative methods are just emerging’” and growing in popularity, in
part because they avoid the use of expensive labelling reagents, eliminate the extra
analytical complexity from labelling, which requires additional ms/ms spectra
interpretation, permit comparison of multiple datasets, and facilitate retrospective
comparisons. These methods are based on using one mass spectrometry (MS) output
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feature of abundance, such as spectral or peptide counts
determining relative protein abundance of the same protein in several samples. Spectral
and peptide counts are easily extracted from MS data and show good correlation with
protein abundance', but their “integer” or discrete nature may overestimate protein
abundance, especially when low spectral counts are observed®. Chromatographic peak
intensity and peak area have also been shown to correlate with protein abundance '*'>,'*
1416 but require complex algorithms to integrate the area under the curve (AUC) or total

elution curve for each isotope pattern. A number of tools can be used to extract peptide

ion intensities following identification such as MSQuant (http://msquant.sourceforge.net )




(originally designed for quantifying stable isotope datasets) and Serac PeakExtractor”.
Alternatively, publicly available tools such as ASAPratio'’, XPRESS" and RelEx" that
have been designed specifically for the comparative quantification of stable-isotope
labeled data using the extracted ion chromatogram method may also be modified and
integrated into pipelines to compute intensities for specific peptide ions. The difficulty
occurs in determining where one peak ends and a new peak begins, especially when
signal and noise are not readily discriminated. Although this approach seems to work
well, it requires high mass accuracy instrumentation and generally relies on “spiking” the

d'>2° It also introduces materials into

sample with an exact amount of an internal standar
the sample before MS analysis, thereby creating a possible new bias from the standards
as well as a new experimental variable external to the original dataset. Adding foreign
materials to any sample is inherently worrisome and complicates universal application.
Several groups have added their own modifications to these approaches and these
generally centre on the algorithm used in calculating the chromatographic intensity or a
modification in how spectral counts are computed®” *2. Lu er al described a modified
spectral counting technique, APEX, which improves on basic spectral counting methods
by including a correction factor for each protein (called Oi value) that accounts for
variable peptide detection by MS techniques”™. The technique is computationally
challenging as it uses machine learning classification to derive peptide detection
probabilities that are used to predict the number of tryptic peptides expected to be

detected for one molecule of a particular protein. The predicted spectral count is

compared to the proteins observed MS total spectral count during APEX computation of



protein abundances. The APEX Quantitative Proteomics Tool, later developed by
Braisted er al** is an application that supports the technique.

Discovering differences in distinct biological samples based on a single shotgun
measurement becomes futile simply because any second replicate “shotgun” MS
measurement will identify 30-40% of proteins not found in another MS measurement of
an identical sample®*. This generation of partially overlapping datasets from identical
samples suggests poor reproducibility of shotgun proteomic analysis which contributes to
the impression of proteomics data “being soft” i.e., of dubious quality or lacking in
stringency”. The statistical edict of “absence of evidence is not evidence of absence”
holds true for shotgun proteomic data, as peptide detection and thus protein identification
are dependent on a number of parameters intrinsic to the MS method itself, including
peptide ionization efficiency. lonization efficiency can be thought of as the tendency of
the peptide to ionize and contribute to a mass spectrum. This is influenced mainly by the
inherent structural properties of the peptide such as length, mass, amino acid composition
and various biochemical properties such as hydrophobicity and pH under the
experimental condition as well as the variable background present when the peptide
elutes. Hence, higher stringencies including reaching 95% analytical completeness of a
sample is required to identify meaningful protein differences between distinct biological
samples; however, doing so requires 5-10 MS measurements of each distinct sample®**°.

Unfortunately, mass spectrometry measurements contain inherent biases and
variations so that signals can frequently be corrupted by either systematic or even
apparently random changes. Thus, replicate samples, regardless of the abundance feature

used, will usually show variation in protein abundance which is likely not a reflection of



biological change. This highlights the need to normalize measurements in order to
minimize inherent experimental bias and variability so that real changes in protein
abundance between distinct samples can be reliably determined. Such statistical
quantification becomes especially critical when multiple replicate samples are analyzed
using single or multiple high-throughput, shotgun proteomics methods, which results in
large volumes of data. In order for label-free quantitative proteomics to be more widely
used, methods of normalizing and quantifying the data must be made available with full

transparency and in a user friendly format.

Supplementary Data

Determining the magnitude of SIy for any given change in protein abundance

The correlation between Sly and the amount of protein loaded was R*= 0.9239. The slope
of the regression line is 1.223 with 95% CI of 1.101 to 1.345, meaning the magnitude of
SIy for any given change in protein abundance can be calculated. For example, a 2 fold
change from 0.01 to 0.02 ng in reality produces a change of 0.01 but for Sky this would
be a change of 0.01223 (95% CI1 0.01101 to 0.01345), whereas a 2 fold change from 100

to 200ng results in a SIy increase of 122.3 (95% CI 110.1 to 134.5).

Analysis of the Standard protein mixture

The AUC, as calculated by each method outlined in the supplementary methods, was
determined for each protein in the standard protein mixture and compared to the spectral
count and Sly values generated for the same proteins across the replicates. Only 16 of the

18 proteins were consistently detected in each of the 10 replicates, so these 16 common



proteins were compared across the replicates. As the actual amount of each protein in the
standard mix was known, we chose to determine which method was best at accurately
predicting the amount of the protein standard in the mix. Thus, the ug/ml predicated
amount of each protein as determined by each quantitative method was compared to the
actual loaded amount (ug/ml) originally added to the mix. The amount determined for
each protein by each quantitative method was averaged across all replicates and
compared to the actual loaded amount using ANOVA.

Most surprising was the Silva method which only managed to correctly determine
the actual protein amount 18.75% of the time. This is very worrisome as this method (of
normalizing the AUC of the proteins to the AUC of a spiked standard) is the most widely
used AUC method in the literature. What was most interesting was that the spectral count
method was better than the Silva method at accurately predicting the actual protein
amount (37.5% vs 18.75%). In addition, this method consistently showed the largest
variation across all of the proteins analyzed. Even the un-normalized AUC method
showed less variation and accurately predicted the actual protein amount more often than
this “normalization to internal standard method”. Theoretically any of the 18 proteins in
the mixture could be selected as the spiked standard as the exact amount of each protein
is known. We arbitrarily chose ovalbumin, as the “standard” with which to normalize the
data. To give AUC the best possible advantage and allow for all possible outcomes, we
went back and checked the variation between the AUC (calculated the Silva way)
calculated amount of all the individual standard proteins across the replicates and found
that myoglobin had the smallest variation across replicates. Therefore, we re-analyzed the

data using myoglobin as the “spiked standard” and thus all the proteins in the mix were



normalized by the AUC for myoglobin. Despite picking the best possible standard protein
in the mix, this method only succeeded in correctly determining the correct amount of the
protein in one additional case, meaning that it was only successful 4 times or 25% of the
time (vs 3 times, 18.75%, using ovalbumin). These results clearly show that SIy was

substantially better than existing methods as a quantitative scoring procedure.

Testing distinct MS instruments

We clearly demonstrated the power of Sly when comparing the replicate MS
measurements of the same sample using the same MS method, regardless of initial
sample load (Fig. 3). Therefore, we chose to determine if SIx could be applied to MS
datasets acquired by different MS instruments to facilitate their comparison
(Supplementary Fig. 3). Proteins of endothelial cell plasma membranes isolated from
lung were separated by SDS-PAGE followed by 1D-RP-LC-MS/MS analysis of all
trypsin-digested gel slices using either an LCQ (IDLCQ) or an LTQ (IDLTQ) mass
spectrometer, each with a distinct LC set up (see supplementary methods or Li er al *’ for
details) The SI and Sly values from the 769 proteins common between the two
measurement types (3 replicates for each measurement) were averaged and plotted using
the mean diamonds. As expected, the raw SI values show variation between the two MS
measurement types (supplementary Fig. 3a) Application of SIx normalizes the datasets so
that no significant difference is detected between the different methodologies
(supplementary Fig. 3b). A bivariate fit of the SIy normalized 1DLCQ and 1DLTQ
datasets indicates a strong positive linear correlation between the two datasets, which is

confirmed by the Pearson’s correlation of 0.796. The oval nature of the 95% C.I. density



ellipse also indicates the significant correlation between the datasets. Again, Sly
succeeded in controlling variation between MS measurements of the same sample
acquired using different MS methodologies so that no significant difference can be

detected between the datasets.

Comparison and quantification of proteins by different MS methodological analysis
of the same sample

Using the lung P datasets, again generated from four different MS methodologies,
we determined whether SIy could be applied to different MS methods to facilitate
comparison and quantification across all the datasets. We used all identified proteins,
both common and distinct across all the datasets. Using GENESIS software, we first
created a one-dimensional heat map (Supplementary. Fig. 7a) based on whether a protein
was identified (black=No; Green=Yes), which clearly showed reproducibility within each
method. After we applied the SIy method to the same MS data to estimate protein levels,
the 500 most abundant proteins from the datasets were presented in a heat map
(Supplementary Fig. 7b). 2D LC-MS/MS (2DC) alone appeared the least sensitive
method as it detected primarily highly abundant proteins, whereas first pre-fractionating
with a gel before 2D-LC-MS/MS (G2DC) increased sensitivity and detected the widest
range of proteins, even at very low levels. This clearly demonstrated the advantages to be
gained by looking at SIy values for each protein across each method, especially when
compared to looking at a one dimensional, identified vs. non-identified approach
(compare Supplementary Fig. 7a vs. 7b). Thus, the SIy method also successfully revealed

quantitative differences between methodologies.



Supplementary Discussion

Although various groups have looked at ms/ms ion intensities, to our knowledge,
there are no reports linking the intensity of the ms/ms fragments to the abundance of the
precursor ion and thus the abundance of the identifying peptides and protein. Tabb et a/
2% Pcarried out extensive analysis on ms/ms fragment ions in terms of identifying trends
in fragment ion peak intensity in the context of chemical composition, ion series and
fragment mass. Analysis of multiple ms/ms spectra revealed that a significant number of
identified ions are due to noise peaks. It is for this reason that we do not use the total ion
chromatogram (TIC) for the spectrum when calculating our SI. Instead we only used the
intensity of identifying peaks that match the precursor. Tabb et al demonstrated that
fragment ions containing basic residues produce more intense peaks that those without
basic residues (showed via analysis using Proteinase K, which produces a greater
diversity of basic residue content in peptides). Tryptic peptides fragment in ion trap
tandem MS producing prominent C-terminal y series ions and N-terminal b series ions.
When basic residues (Lysine and Arginine) are at the N-terminus the b series is most
intense, when basic residues are at the C-terminus, the y series is most intense. Therefore
these basic tryptic peptides are most likely the more intense peaks in the spectra and this
reduces the risk of including noise in the intensity calculation ***°. In addition, Tabb et al
has reported the incorporation of intensity values from ms/ms spectra to enhance peptide
identification scores, because these intensity values reflect the basic residue content of
the fragment ion, thus facilitating the generation of more accurate theoretical spectra **-",

Venable ef al ** described an automated approach for the analysis of complex mixtures

from tandem mass spectra. They adapted their RelEx program to extract and integrate ion



chromatograms from ms/ms scans for isobaric labeling strategies, such as '°N labeling
used in their paper. Therefore, in retrospect, it appeared logical, and subsequently

rewarding, to investigate the use of ms/ms ions as an abundance feature.

Supplementary Methods

Sample preparation:

Sprague-Dawley female rats (150—250g; Charles River Laboratories) were used unless
otherwise indicated, and all animal procedures were carried out in accordance with the
Sidney Kimmel Cancer Center committee on Animal usage and Care (IACUC) standards.
As described previously’™ **, luminal vascular endothelial cell plasma membranes were
directly isolated from rat lung and liver tissues with quality control showing > 20-fold
enrichment for known endothelial makers and > 20-fold depletion of markers of other
cell types and subcellular organelles. Sample purity was assessed with multiple
antibodies against protein markers for endothelial membrane and other cellular

compartments.

Western blot analysis

All antibodies were purchased commercially or obtained as gifts from other researchers.
Custom polyclonal antibodies were provided by BioSource (Hopkinton, MA) and 21st
Century Biochemicals (Marlboro, MA). Western blotting was carried out as described

333 Densitometry analysis was carried out using Scion Image software for

previously
PCs.

Mass spectrometry analysis



Gel Pre-fractionation: Proteins were pre-fractionated on SDS-PAGE gels prior to 2D-
LC-MS/MS and Reverse Phase-MS/MS. Briefly, proteins in the samples were separated
by SDS-PAGE (PAGE-r gel, 8 - 16% T, 10 x 10 cm Cambrex Bio Science, Rockland, Inc.
ME, USA) and visualized with colloidal Coomassie Blue staining (Invitrogen, Carlsbad,
CA, USA.). Gel lanes were cut into slices (usually 70 but depending on sample and
experiment, always > 50) for in-gel proteolytic digestions. For RP-MS/MS, digested
peptides were extracted from each gel slice three times with 20% ACN and 10% formic
acid solution. The extracted peptide fractions were lyophilized. For 2D-LC-MS/MS,
peptides extracted from each gel slice were first pooled into 7 groups then lyophilized.
Reverse-phase LC-MS/MS: For analysis by LCQ, lyophilized peptides were resuspended
in 10 pl of buffer A (0.1% formic acid, 5% Acetonitrile (ACN)), and loaded onto a
manually packed C18 microcapillary column under a Helium Pressure Cell, with approx.
600 psi. The bound peptides were eluted with 5 to 80% ACN gradients containing 0.1%
formic acid over a 60- minute period. The eluted peptides were directly introduced into
LCQ DecaXP (Thermo Fisher Scientific, Inc., Waltham, MA, USA) equipped with ESI
nanospray ion source (Micro Sprayer, Mass Evolution, TX, USA). The flow rate was
maintained at 200 to 250nl/min.

For analysis by LTQ, the lyophilized peptides were resuspended in 5 pl of buffer
A and injected into a 5 mm trap cartridge (Dionex Corporation, Sunnyvale, CA, USA) for
desalting using a FAMOS autosampler and a Switchos II system (Dionex Corporation,
Sunnyvale, CA, USA). The desalted peptides were then back-eluted onto the analytical
column, PepMap 100, C18, for the separation steps. The bound peptides were separated

by a 110 minute ACN gradient (5% to 80% containing 0.1% formic acid) and directly



introduced into LTQ equipped with Nanospray I ion source (Thermo Fisher Scientific,
Inc., Waltham, MA, USA). The flow rate was maintained at 200 to 250nl/min.

Data acquisition from both the LCQ and LTQ was carried out in data-dependent
mode. Full MS scan were recorded on the eluting peptides over the 400-1400 m/z range
with one MS scan followed by three MS/MS scans of the most abundant ions. The
temperature of the ion transfer tube of both mass spectrometers was set at 180°C and the
spray voltage was 2.0 kv. The normalized collision energy was set at 35% for both LCQ
and LTQ. A dynamic exclusion was applied for Repeat Count of 2, a Repeat Duration of
0.5 minute, and an Exclusion Duration of 3 min.
2D- LC-MS/MS: Lyophilized peptides were resuspended with 30 pl of buffer A, then
loaded onto a two-dimensional microcapillary column (manually packed C;g reversed
phase and strong cation exchange column). The loaded samples were directly introduced
into the LCQ mass spectrometer equipped with ESI nanospray ion source by eluting the
bound peptides with a 2D-LC/MS/MS scheme controlled by Agilent 1100 HPLC
quaternary pump’’s. Briefly, 17 salt steps (ammonium acetate) were applied. Each salt
step was followed by a 5 to 80% ACN gradient containing 0.1% formic acid to elute the
peptides on the C;g column. The flow rate was maintained at 200 to 250nl/min. Data
acquisition and the instrument setup were the same as the reversed-phase analysis, except
the dynamic exclusion window was applied for duration of 10 minutes.

Gel-free 2D- LC-MS/MS: (2DC) analysis was performed as previously described *.

Spiking experiments:
A protein standard mixture was prepared using protein standards (obtained from Sigma)

added at various concentrations spanning a wide dynamic range.



Protein name Uniprot accession number Amount (fmol) Amount loaded (ng)
Interleukin P10145 0.5 0.0010
Fatty acid-binding protein P05413 0.5 0.0018
C-reactive protein P02741 0.5 0.0028
Annexin A5 P08758 0.5 0.00447
Glutathione S-transferase P P09211 5 0.0290
Cathepsin G P08311 5 0.0334
Insulin-like growth factor II P01344 50 0.0933
Gelsolin P06396 5 0.1037
Glutathione S-transferase Al P08263 50 0.3185
Cathepsin D P07339 50 0.3338
Antithrombin-III P01008 50 0.6129
Alpha-lactalbumin P00709 500 1.7587
Creatine kinase M-type P06732 500 5.3837
Epidermal growth factor PO1133 5000 7.763
NAD(P)H dehydrogenase | P15559 5000 38.73
[quinone] 1

Catalase P04040 5000 74.478
Carbonic anhydrase 1 P00915 50000 359.335
Carbonic anhydrase 2 P00918 50000 363.687
Serum albumin P02768 50000 829.91

The protein mixture was run on 1D-PAGE and stopped before they were separated. The
bands containing the 19 proteins were digested with trypsin, and analyzed by Reverse-
phase LC-MS/MS and 2D- LC-MS/MS as described above (n=4). Raw files were
searched against a protein database containing sequences for the 19 spiked proteins as
well as an additional 20 “decoy” proteins, which were not added to the mixture. Database
search and identification parameters were as described below except 1 protein hits were

also considered.

Database search:

The acquired MS/MS spectra were converted into mass lists using the Extract msn
program from Xcalibur and searched against a protein database containing human
(97,361 entries), rat (52,881 entries) and mouse (112,998 entries) sequences using the
Sequest program in the Bioworks™ 3.1 for Linux (Thermo Fisher Scientific, Inc.,

Waltham, MA, USA). The database includes protein entries from NCBI RefSeq and




SwissProt databases and was downloaded in April 2006 (Total entries, 262,200). The
searches were performed allowing for tryptic peptides only with peptide mass tolerance
of 1.5 Da for LTQ data, 2.0 Da for LCQ data, and a minimum of 21 fragmented ions in
one MS/MS scan. Accepted peptide identification was based on a minimum ACn score
of 0.1; minimum cross correlation score of 1.8(z=1), 2.5(z=2), 3.5(z=3). The peptides
identified using these criteria showed much lower mass errors compared with other
Sequest scores (>’ supplementary info). False positive identification rate was determined
by the ratio of number of peptides found only in the reversed database to the total number
of peptides found in both forward and reverse databases. The false positive identification
rates were < 1%. The positive protein identification results were extracted from
Sequest.out files, filtered and grouped with DTASelect software using above criteria.
Proteins were identified based on 2 unique significantly identified peptides.

In general, fragment ion intensity, peptide number and spectral counts were
extracted from the DTAselect output files using a script written in-house (supplementary
data). For the purpose of this manuscript, fragment ion intensity is defined as the total
intensity of all detected fragment ions (ms/ms spectra) aligned with a specific peptide.
The fragment ion intensity of each peptide that passes the threshold for identification that
gives rise to a significantly identified protein (see above) is summed. The combination of
these summed fragment ion intensities from all ms/ms spectra and peptides relating to
this protein is combined and is referred to as the spectral index (SI) for that protein. For
faster data acquisition, we used centroid algorithms for all of the MS analysis. In general,

the centroid algorithms will sum the intensities if the ions have very close values, i.e.



isotope clusters. Therefore, the fragment ion intensities obtained are those that are
recorded in Bioworks at the time of data acquisition.

Because DTAselect does not extract area under the curve (AUC) measurements
(Bioworks Version 3.1 does not have the features for AUC calculation), we had to re-
search our MS data to permit comparison of AUC and SI quantification. We searched one
2D-LC-MS/MS run from 4 replicate measurements of a gel section of our liver
endothelial cell plasma membrane samples using Sequest on the cluster version of
Bioworks 3.2. AUC values for each peptide were manually extracted using the AUC
feature of Bioworks 3.2, and compared to SI values from the same gel section. The

default parameters for an LTQ MS were used to calculate the AUC (see below).

The “standard protein mixture” experiments

Raw data files from 10 replicate analysis of the standard protein mixture > carried out by
an LTQ mass spectrometer, were downloaded from the ISB website. We chose these
datasets because it is the same mass spectrometer as we use in our own lab, and thus have
all the software necessary for searching the data and extracting the required information.
We searched the data against the same databases highlighted in the original paper using
Sequest with Bioworks 3.2. The resulting data was sorted and group as described above
using DTAselect for the calculation of spectral count and Sy values. We used the peak
area calculation function in Bioworks 3.2 (incorporates the ICIS algorithm) to calculate
the AUC for each significantly identified peptide that was matched to a standard protein
in the sample. We used the default parameters for the AUC as follows: mass tolerance

1.5amu, 5 point smoothing, minimum threshold for peak integration is 50,000. The AUC



for each protein was presented multiple ways, including methods corresponding to

normalization approaches for AUC published in the literature. As Sly is a normalized

index, we thought it only fair to present the AUC data before and after it has been

normalized by various published methods. These include:

1)

2)

3)

4)

total AUC: the AUC for each protein is presented as the sum of AUCs for all
significantly identified peptides identifying each protein in the run (un-normalized
data).

PA: this corresponds to the percentage peak area (PA), which is the default
“normalization” in the Bioworks program, where the total AUC for a protein is
expressed as a percentage of the total AUC for all identified proteins.

Silva et al: the average AUC for the 3 most intense peptides per protein is
calculated and then normalized by the AUC of a protein standard.”’. This
approach is very similar to Mann ez al *°, also very similar to other popular AUC
methods that normalize to the AUC of a spiked internal standard.

Old et al: sum the AUC for each peptide, then each peptide is corrected by
dividing the peptide by the sum of all peptide intensities. Similar peptides are
compared across replicates and average peptide ratios are generated to reflect

protein abundance”.

The AUC, as calculated by each method outlined above, was determined for each protein

in the standard protein mixture and compared to the spectral count and Sly values

generated for the same proteins across the replicates. Only 16 of the 18 proteins were

consistently detected in each of the 10 replicates, so these 16 common proteins were

compared across the replicates. The amount determined for each protein by each



quantitative method was averaged across all replicates and compared to the actual loaded
amount using ANOVA. The mean value of each protein was compared to the actual

37,38
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loaded amount using the Tukey-Kramer HSD metho (same principle as the t-test,

but corrects for multiple testing).

Statistics

Datasets distribution: skewness and kurtosis: The skewness is a measure of distributions
symmetry. For symmetrical distributions the skewness = 0, for right and left tailed
distributions the skewness is >0 and <0, respectively. Kurtosis is a measure of whether
the data are peaked or flat relative to a normal distribution. Datasets with high kurtosis
(>0) tend to have a distinct peak near the mean, decline rather rapidly, and have “heavy”
tails. Data sets with low kurtosis (<0) tend to have a flat top near the mean rather than a
sharp peak. Kurtosis = 0 for a normal distribution.

Unsupervised hierarchical clustering: Cluster analysis was performed on a dataset
from 5 replicate MS measurements of endothelial cell plasma membranes isolated from
kidney and heart samples using JMP 5.1, and using Wards hierarchical method **.Ward's
method is a hierarchical method designed to optimize the minimum variance within
clusters (minimizes within-group dispersions). The clustering was unsupervised meaning
without labeled classes, optimization criterion, feedback signal, or any other information
beyond the raw data. Simply, we did not differentiate in any way the heart samples from
the kidney samples. A Two-way clustering was performed, which is a data mining

technique that allows simultaneous clustering of the rows and columns of a matrix ***.



Perl script to extract intensity values from DTAselect results file for SIy calculation
#!/usr/bin/perl
$debug = 0;

my S$infile = &get("Full path for DTASelect-filter.txt");
open(INFILE, S$infile) || die "can't open file '$Sinfile";

my Soutfile = &get("Output file");
open(OUTFILE, ">$outfile") || die "can't open file 'Soutfile";

my S$intensity col;
print OUTFILE "id\tsum\n";
while (KINFILE>) {
s/\s+$//; # remove trailing newline
my @line = split /\t/;
if ($line[0] eq "Unique" and $line[1] eq "FileName") {
for my $i (0 .. $#line) {
$intensity col = $i if $line[$i] eq 'Totallntensity";
}

$mode = 1;

next;
h
last if $line[0] eq "Unfiltered";
last if $line[1] eq "Proteins";

next if $mode !=1;
if ($line[1] > 0) {
&print;
warn "$line[1] is > 0 : $line[1]\n" if $debug;
push(@names, $line[0]);
warn "adding $line[0] to \@names\n" if $debug;
}
else {
die "count not find Totallntensity column" if $intensity col eq";
warn "$line[1] is <= 0, adding $line[S$intensity col] for @names\n" if $debug;
push(@values, $line[$intensity col]);
}

}
&print;

sub print {
return if @names == 0;
return if @values == 0;
my $sum = 0;



grep($sum +=§_, @values);
for my $name (@names) {
print OUTFILE "$name\t$sum\n";

}
@names = ();
@values = ();
}
sub get {

}

local($prompt, $default) = @ ;
if ($default ne "") {

&get2("$prompt [$default]: ", $default);
}

else {
&get2("$prompt: ", $default);

}

sub get2 {

local($prompt, $default) = @ ;

local($mode) = $;

$|=1;

print "$prompt";

$| = $mode;

local($tmp);

$tmp = <STDIN>;

$tmp =~ s/\n$//; # remove trailing \n
$tmp = $default if $tmp eq ";

return $tmp;
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Supplementary Table 1: Summary of the normalization equations.
From left to right, columns contain the equation number, the abbreviation of each equation
used in the paper and the equations. Equation abbreviations: spectral index (SI), spectral

count (SC), peptide number (PN), peptide length (L)
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Supplementary Figure 1: Distribution of abundance features from liver datasets.

Two MS datasets from replicate liver endothelial cell plasma membrane samples were pooled
and the means, standard deviations (S.D.), skewness and kurtosis are presented for S| before
(a) and after (b) log transformation. To determine if the two datasets come from a common
distribution, the replicate datasets were graphed using Q-Q plots with liver 1 on the y-axis and
liver 2 on the x-axis. Data before (¢) and after (d) log transformation is shown. A 45-degree
line showing perfect correlations is plotted for reference. Similar data is plotted for e, f) Spectral
count (SC), and g, h) peptide number (PN), i, j) NSAF normalized data, k, I) Rsc.
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Supplementary Figure 2: Validation of Sl as a relative quantitative tool using a protein mixture of known content
a) A protein standard mix spanning a wide dynamic range (0.5 — 50,000fmol) was analyzed by 2DLC. Sl values for each
protein were calculated and converted to observed ng amount of protein using the RPQ-P equation (see online methods)
and plotted against the expected ng amount (actual ng amount of protein added to mixture). The bottom left portion of the
graph was zoomed and expanded to facilitate better visualization of the actual fit for the low abundance proteins. The

R2 = 0.8435. b) The protein standard mixture was analyzed as (a) above but two replicates were analyzed on different
LTQ mass spectrometers. The Sl value for each protein identified on one machine was plotted against the Sl value

for the same protein identified on the other machine. R2 = 0.9972. c) Sl values for each spiked protein were calculated,
averaged values across 3 replicates and the log10 values were plotted against the log10 amount of spiked protein.

d) Protein ratios were calculated for all spiked proteins by generating a ratio between the Sl value of a specific protein
divided by the Sl value of another protein in the mixture, log10 ratios were generated for all different combinations of
proteins and plotted against the log10 expected ratio (generated from actual ng value of the protein added to the mixture
divided by the ng value of the other protein).
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Supplementary Figure 3: Statistical analysis of the normalization methods applied to the

datasets from different mass spectrometers.

Lung endothelial cell plasma membranes were separated by SDS-PAGE followed by 1D-RP-LC-MS/MS analysis of all
trypsin-digested gel slices using either an LCQ (1DLCQ) or an LTQ (1DLTQ) mass spectrometer. The Sl and Sl values
from the 769 proteins common between the two measurement types (3 replicates for each measurement) were averaged
and plotted using the mean diamonds. The x-axis represents the 2 different MS measurement types and the y-axis
represents the log of the a) raw Sl values or b) SIN. ¢) A bivariate fit of the Sl normalized 1DLCQ and 1DLTQ datasets
indicates a strong positive linear correlation between the two datasets, which is confirmed by the Pearson’s correlation of
0.796. The oval nature of the density ellipse also indicates the significant correlation between the datasets.
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Supplementary Figure 4: Comparison of Sl and Peak area (AUC) across replicate samples

Liver endothelial cell plasma membranes (4 replicates) were separated by SDS-PAGE. Gel lanes were cut into 72 slices
for in-gel proteolytic digestions. Peptides extracted from each gel slice were pooled into 7 groups and then lyophilized.
One out of these 7 groups (number 4) was analyzed by 2D-LC-MS/MS as described in the supplementary methods.
Proteins common to all 4 replicate MS measurements were identified and AUC values for each peptide identifying these
proteins were manually extracted using the AUC feature of Bioworks 3.2. Sl values were also calculated. Summary
statistics (mean and 95% CI) for the (a) AUC and (b) Sl were plotted using the mean diamonds and comparison circles
methods as described in the online methods. X-axis shows the 4 replicate measurements and the y-axis represents
the log of the abundance feature being examined. For analysis of difference in mean intensities between multiple
replicate samples, analysis of variance (ANOVA, one-way, P<0.05) was performed. (c) AUC values were normalized
using the protein length and global equation as in Sly, where the AUC replaces Sl in the calculation.

The normalized values were plotted and analyzed as described above.
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Supplementary Figure 5: Statistical analysis of the comparison of proteins quantification across replicate
measurements using 6 methods (relative to known value)

The mean and 95% confidence interval (Cl) for protein abundance, as determined by various relative quantitative
methods, were plotted for all proteins from the “standard protein mixture” (that were detected in all 10 replicate analysis)
and compared to the actual loaded amount using ANOVA, and individual means were compared using the Tukey-Kramer
HSD method (methods online). Quantitative methods that were not significantly different from the actual protein
abundance, as determined by overlapping mean diamonds and confidence circles and confirmed by ANOVA are
highlighted in red in the Figure.



Supplementary Figure 6: Statistical analysis comparing the Silva AUC method to the actual protein amount,
where the protein with the least variation across replicates was chosen as the internal standard.

The mean and 95% confidence interval (Cl) for protein abundance, as determined by the Silva et al method'?, using

the protein standard with the least variation across the replicates as the “spiking control”, were plotted for all proteins from
the “standard protein mixture” (that were detected in all 10 replicate analysis) and compared to the actual loaded amount
using students t-test. If the quantitative method was not significantly different from the actual protein abundance,
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Supplementary Figure 7: Heatmap of SIN values facilitates assessment of reproducibility between mass
spectrometry methodologies.

a) Protein detection map: Sl was applied to 24 rat lung ECPM MS datasets from 4 different methods (see online methods
Each row represents one protein and each column represents one MS experimental measurement.

A binary system was used with a green signal given to proteins positively identified versus black when not identified.

b) Protein quantification map. Protein levels were estimated by converting the Sl value to ng values (online methods).
The 500 most abundant proteins from the datasets were presented in this heat map. The data range is from 0 (dark blue)
to >=3 (light blue) ng. Small white dots in the heat map indict proteins detected at levels above 3ng, thus exceeding the
values represented by the color scale.



